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An analytical expression is derived for the transient thermal deformation of the 
active medium in a periodicduty laser with natural cooling. 

The effect of thermal conditions on the performance of a solid-state laser is evident in 
that the emission properties of the active medium change as the temperature rises [i] and that 
the resonator becomes optically distorted as a result of the thermal deformation of the active 
medium [2]. In the case of a laser with forced cooling of the active medium, a calculation 
of the temperature field [3] will yield information about the mean-volume temperature and the 
amount of thermal deformation. Such a calculation is more difficult in the case of natural 
cooling~ because the heat-transfer processes in the luminaire system, which consists of a pump 
lamp and the active medium inside a common envelope, have not yet been studied through com- 
pletely [4-6]. In the first stage of those studies, relations for the mean-volume temperature 
of the luminaire components have been established and the thermal conductlvitles have been 
determined [4], which makes it easier to stipulate the boundary conditions for calculating the 
temperature field in the active medium. Even in this stage of the study, however, a deriva- 
tion of analytical relations required substantial simplifications for a formulation of the 
thermal model. 

The initial studies have revealed that thermal deformation of the active medium under 
conditions of natural cooling produces an optical wedge and is caused by heat transfer from 
the bulb of the pump lamp. The magnitude of thermal deformation of the active medium 8(tad) 
has been defined [6] according to the relation 

~ _  VCL A~, Vr On ~k(n--1).  (1) 
2R O~ 

The greatest difficulty arises in determination of the temperature drop A~ between the 
generatrices of the active medium nearest to and farthest from the lamp. In order to solve 
this problem, it is necessary to determine the temperature field in the active medium. How- 
ever, for calculating the temperature field one must stipulate the boundary conditions at 
the surface of the active medium. This, in turn, requires a detailed study of the heat trans- 
fer between the active medium and the other luminalre components. If, after completion of 
such a study, one could stipulate the boundary conditions in an analytical form, they would 
obviously only somewhat approximate those in the real process. In the first stage of such 
studies, therefore, it is worthwhile to treat this problem in its most simplified form and 
it suffices then to consider only the principal directions of heat flow in the luminalre 
system. A rather simple expression for the steady-state temperature drop A ~ has been obtained 
[6] which disregards the heat flow in the axial direction, vlz. 

A~= P~ In H + R  (2) 
2~L H - - R "  

In the derivation of this relation only the heat transfer between the pump lamp and the 
active medium was taken into account, not the heat transfer from each of them to the luminaire 
envelope. Calculations based on expression (2) will, therefore, result in large errors when 
the pumping power is high and the heat-transfer coefficient from lamp and from active medium 
to luminaire envelope is correspondingly rather high. We must add here that in the derivation 
of relation (2) internal heat generation in the active medium was also disregarded, its effect 
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Fig. i. Schematic diagram depicting the propagation of thermal 
flux from the pump lamp to the active medium: (a) luminaire sys- 
tem (i -- pump lamp; 2 -- active medium; 3 -- luminaire); (b) pas- 
sage of thermal flux q (W/m ~) through section of the active 
medium; (c) simplified schematic diagram depicting the passage 
of thermal flux q through section of the active medium; (d) con- 
version from the problem of the temperature field in an in- 
finitely long cylindrical active medium to the problem of the 
temperature field in an infinitely long plane wall (6 is the 
thickness of an elementary layer the temperature dls=ribution 
over which has to be determined); arrows denote flux lines, dash 
lines denote isotherms. 

Fig. 2. Wedgewise thermal deformation 8 (relative units) as a 
function of the time T (relative units) of laser operation in the 
periodic mode, at various level of pumping power P: i) 45 W, 2) 
75 W, 3) 150 W, 4) 300 W, 5) 750 W; dots denote experlmental 
values, vertical line segments denote the magnitude of experi- 
mental error in determination of 8. 

on the magnitude of A~ not having been determined yet either. These deficiencies make it 
difficult to use expression (2) for practical estimates even of steady-state temperature drops 

The object of this study is to establish approximate analytical relations for the transi- 
ent temperature drop across a section of the active medium and the wedgewise thermal deforma- 
tion of the latter, relations which take into account the heat transfer between components of 
the luminaire system (pump lamp, active medium, luminaire envelope). 

We first consider the temperature field in the active medium placed inside the lumlnaire 
system. That system is schematically shown in Fig. la. Inside the active medium there are 
heat sources with a specific power Q, a part of the medium surface participates in the heat 
transfer from the pump lamp, and from another part of the medium surface heat is transferred 
to the lumlnalre envelope. The heat transfer between components of the lumlnaire system is 
effected through air filling the luminalre cavity. 

We make the following assumptions: heat generation in the active medium and in the pump 
lamp is continuous in time and uniform over the volume, the thermophysical properties of the 
active medium are Isotroplc and not temperature-dependent, and the medium separating the 
components i, 2, 3, has zero thermal capacity. 

We introduce further simplifications, following an analysis of the basic processes in 
the luminaire system on the basis of the results obtaned by calculation of the mean-surface 
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temperature [4]. It has been demonstrated in study [4] that the luminaire envelope heats up 
insignificantly and can be regarded as an ambient medium with a slowly rising temperature, 
until the pump lamp and the active medium reach their steady thermal state. This is a conse- 
quence of the large thermal capacity of the luminaire. This feature of the given system of 
bodies permits us to separately consider the thermal state of the lumlnaire envelope heated 
by internal heat generators and by thermal flux from the pump lamp and the active medium, 
with the temperature of the lumlnalre envelope ts -- t a = 9~ regarded as the ambient tempera- 
ture. The active medium is heated by internal heat generators and by thermal flux from the 
pump lamp. Under real conditions the thermal flux from the pump lamp reaches a part of the 
surface of the active medium, is partly absorbed in the volume of the latter, and is partly 
dissipated by the opposite other part of the surface. In the general case, moreover, the 
flux lines can depart from their original direction (Fig. ib). Since the heat transfer in 
the luminaire system has not yet been studied thoroughly enough, however, it is difficult to 
stipulate a law describing the passage of thermal flux through a section of the active medium 
which will correspond to the real process. We therefore will consider an approximation. We 
assume that the thermal flux lines from the pump lamp through a section of the active medium 
are one-dlrectional and the thermal flux density is uniform. We will, moreover, use the 
simplified scheme of propagation of thermal flux q according to the diagram in Fig. Ic. The 
validity of this and the further simplifications will become evident from subsequent compari- 
sons of calculations with experimental results. We will recall that, in the final analysis, 
the sought quantity is not the temperature field in the active medium but the temperature 
drop across its diameter. It therefore suffices to calculate only the temperature over its 
diameter within an elementary layer of thickness 6 (Fig. ld). This problem is equivalent to 
the problem of the temperature field in an infinitely long beam of square cross section (side 
of the square 2R) with the surfaces y = R, y = --R thermally insulated and the surfaces x = 0, 
x = 2R participating in heat transfer with the pump lamp and with the luminalre envelope, 
respectively. The problem thus reduces to calculation of a one-dlmensional transient tempera- 
ture field analogous to the temperature field in an infinitely large plane wall with boundary 
conditions of the third kind at its surfaces. The ambient temperature at its x = 0 surface 
is equal to the temperature tl of the pump lamp and the ambient temperature at its x = 2R 
surface is equal to the temperature t3 of the luminaire envelope. An approximate expression 
for these temperatures has been obtained in an earlier study [4], viz., 

ll--te=Oi= ( Pi -~ 93~[l--exp(--m~)], m~= ~--L3. (3) 
\ ~3 ] Cl 

We will assume that the luminaire temperature rises slowly until m~7 > 1 to@s << Px/g~s [4]. 
Then expression (3) can be rewritten as 

~i = P.__./__i [ 1 - -  exp (-- mtz)]. (4) 
GI3 

With all the simplifications made here, the temperature field in the active medium is described 
by the differential equation 

02~___._a_ ~ + Q = 1 0% (5) 
Ox z ~ a O~ 

with the boundary conditions of the third kind 

Ox x=O % (6) 

O~ox ~-=~R-" ~23~ 0 2 = 2  R. (7) 

We further assume that at the initial instant of time the temperature is everywhere the same 
and equal to the ambient temperature 

t~l~=o -- to =.~21~=o = O. (8) 

Integration of the system of equations (5)-(8) results in rather unwieldy expressions not 
very suitable for practical estimates and, for this reason, it is worthwhile to seek an ap- 
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proximate solution to the problem. We therefore'average Eq. (5) over the x-coordinate. 
i n t r o d u c e  t h e  o p e r a t o r  

2R 

t 1 f ax  = f~, 1~ [#~ (x)l = #.~. s,< If] = 

0 

We 

Applying the operator I x to the first term of Eq. (5) yields 

I~[ OxZ J 2R . Ox z 2R \ Ox ] 2R Ox 
0 0 

Now applying the operator I x to all terms of Eq. (5) and using Eq. (9), we obtain 

:-TJ Ox _ 
Inserting here ~he boundary conditions (6) and (7) results in the equation 

1 O#~ [ ~ +  1 (a~__a~#~x= ~ ~=2R)] a 0"~ -2R--L- - a23#~ = A, (10) 

where A denotes ~he expression inside the square brackets on the right-hand side of Eq. (i0). 

We make another assumption, viz., that the active medium is at all points of its section 
heated at approximately the same rate equal to the rate of rise of its mean-volume tempera- 
ture. Then 

_~I a#~ ~ A. (ll) 
a a-v a a~ 

A comparison of relations (5) and (ii) yields also 

az~2 ~A Q (12) 

The main difficulty in solving Eq. (i0) directly is that it requires expressing the 
quantities 9alx=o andre x=aR through~ax. According to relation (i0), the quantity A in 
Eqs. (ii) and (12) is only a function of time and not a function of the coordinates, which 
simplifies the integration of Eq. (12) 

s~ ( s~ x #~+[ F 2s~+so. x - - T -  ~ ] ( Q _A)4Rz, (13)  
# 2 ( ~ - -  l + s  o + s 2  , , So 2 % ( l + s o + S 2 )  2 ( l + s  o+s2)  

where x = x/2R; so = ~122R/X; s2 = a12/~23. 

t a 
We will calculate A by determining from expression (13) the m~an-volume temperature tax -- 

=O2X 
! 

j' 2s"-q-s~ #i-J- (s~176176176 ( Q - - A ) 4 R  e, 
0 ~  = ~ (x) dx = 2 (l + So + s~) 12So (1 + So + s~) ;~ 

0 

A-- 1 [Q4RZ+ 6So(2%+So) # ~  12s~176 #~x]. (14) 

4R z [ ~  (So -+- 3s2) (So -f- 4) q- SoS~ (So -t- 3s2) (So q- 4) + SoS~ / 

so that 

Inserting expression (14) into expression (ii), we obtain the equation 

6So (2s2 + So) 
(So + 3s2) (So + 4) + sos2 

(8) and with expression 

4R 2 O#~ + 12%(1 + So + s2) #2x Q4R2 ~- 

a a ,  (So + 3s~) (so + 4) + SoS2 ;~ 

The solution to this equation, with the initial condition 
is 

#~ (T) = (2s2 q- So) P~ [ 1 -]- b exp (--  miz) --~ 
2 (1 -J- s o -~- s2) oi3 

#i. 

(4) for 0 i, 
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- -  ( I  + b) exp ( - -  ~ ' 0 ]  -k 
q 1 I - -  (oo+3s2)(so-w4)~sos~ Q4R ~ [I -- exp (-- 7n~-c)], 
128o(1 + so + s~) 5~ (15) 

where 

b = l / ( - n n ~ - - 1 ) ;  m. 12(1+So-,~s2) s=m~; m2 -- %a 
/ \  m2 ~ (So+ 3s2)(.% q- 4) + sos2 C~ 

Inserting expression (15) into expression (14) and then into expression (13) yields the ap- 
proximate relation 

So (So-}-s2 x)  P~ [ l _ e x p ( _ m ( O ] +  
02 (x, "0 = 1 + So + s~ so ~3  

+ .2so( l+so+s. ,_)  -~ 2 i l - 7 _ ~ o ~ s ~ i X - - - ~  - [m- -exp ( - -~h ' 0 ]+  (16) 

6So(2S., + So) Pi (l+b)[exp (--m(0---ex p (--m2~)]} 
-}- (s o + 3s.,) (So + 4) + So% ol~ 

for the temperature field in the active medium. From relation (16) we obtain the expression 

A{~ = @~(x, ~:)I~--o - -~2(  ~, T)IT=' -- So P' {1 -- exp (--m(c) + 
l + s o + s 2  ola (17) 

s 
+Ql  [exp (-- m(O - -  exp (-- rn~,)] + f22 [1 - -  exp (-- m2~)]} 

(18) 

for the temperature drop, where 

3 (1 --<)(So + 282) (1 + b); 
~Q~ = (So + 38~) (So + 4) + SoS~ 

Q.,. 1 - -  82 Q4R z ~i3 : 1 - -  s~ (qa P2 

2So ~" Pi 28.2 ~e. Pi 

The results of calculation of the wedgewise transient thermal deformation 8 in a real 
laser, according to expressions (17) and (i), are shown in Fig. 2 together with experimental 
data obtained by the interference method [6]. The values of oij and other laser parameters 
have been taken from our earlier study [4]. For these calculations we used data on the thermo- 
optical constant W given by other authors [7-9]. The graph in Fig. 2 indicates that the vari- 
ation of 8 in time has been calculated with a satisfactory accuracy. 

In most cases Pa $ 0.1P1 and sa ~ 1 so that, according to the second of expressions (18), 
~s = 0 and expression (17) for the steady-state temperature drop AO can be simplified to 

A~ -- So Pi Pi  ~ ~ : __~12~'23 (19) 

1 + So + s~ oi3 ~i3 XL -6 ~ '  gi2q-g23" 

For very low and very high thermal conductivity ~ of the active medium material, expression 
(19) becomes, respectively, 

for 6 Pi 
X--L-- >> I A~}- , (20) 

C~i8 

for cr Pl (Y (21) 
z-Z- << I A, = -- . (ri3 )~L 

It follows from these two expressions and expressions (i) that in the case (20) minimizing 
the wedgewise thermal deformation 8 requires an active medium with the minimum thermooptical 
constant W. In the case (21) the minimum 8 will be achieved by using an active medium with 
the minimum ratio W/I. 
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NOTATION 

W, thermooptical constant of the active medium; n, refractive index of the active medium; 
k, thermal expansivity of the active mediBm; l, thermal conductivity of the active medium; ~, 
thermal diffusivity of the active medium; L, length of the active medium; 2R, diameter of 
the active medium; H, distance from axis of the pump lamp to the axis of the active medium; 
9i = ti -- ta, excess temperature; ti, temperature of the i-th element; ta, ambient tempera- 
ture; Pi, power of heat generation within the i-th element; Ci, total thermal capacity of 
the i-th element; Pij, thermal flux from body i to body J (i, j = l, 2, 3); oij, thermal 
conductance between body i and body j (i, j = i, 2, 3); ~ij, heat-transfer coefficient from 
body i to body j (i, j= l, 2, 3); P, average pump power; and T, time; i, pump lamp; 2, active 
medium; and 3, luminaire envelope. 
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